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Introduction

In many practical situations, the object of study is only\wnahrough a finite set of possibly noisy
sample points. It is then desirable to try to recover the ggorand the topology of the object from
this information. The most obvious example is probablyatgfreconstruction, where the points are
measured on the surface of a real world object. Also, a curesearch topic in cosmology is to study
the large scale structure formed by the galaxies, which seeilve an interconnected network of walls
and filaments. In other applications, the shape of interest Inge in a higher dimensional space, as
for instance in machine learning and in particulamanifold learning. This is also the case in time
series analysis, when the shape of study is the attractodyhamical system sampled by a sequence
of observations. In this context, an important question fstd a sampling condition guaranteeing that
the shape can be reconstructed correctly. Besides provideugetical guarantees, such a condition
may be used to drive the recontruction process itself. lddagossible reconstruction strategy is to
look for the shapes that are best sampled by the data poitsawdistigate these questions in a fairly
general setting assuming a very simple reconstructiongsic

The distance functions framework

Topological and geometric features of a shape cannot betlgirextracted from an approximating
data: for example, the number of connected components ddi@ess obviously not the same as the
one of a point cloud approximating it. Worse, the occureri@®me features may depend on a “scale”
at which both the data and the shape are viewed: for exampleed with human eyes, the surface
of a real world object may look very regular but at a microscgeale it appears as a much more
complicated surface with many holes, tunnets,..

|dea: study the topology of the level sets of the distance fundibaine data and compare it to the one
of the level sets of the distance function to the shape.

The distance function dj- to a shapes C
R" (i.e. a compact set) is defined by

di(x) = inf d(x,y) forall x € R"
ye K

whered(x,y) denotes the usual euclidean
distance. Theffsets K" of K are the sub-
level sets of the distance functiolX” = TR e L

d([0,7]).

Closeness between two shap&sand K’
IS measured by the mean of thmusdorff :
distance dy (K, K') which is the smallest L Y
r > 0 such that’ ¢ K" andK’' c K". Teveclls see Lo

Gradient and offset topology

Although distance functions are not differentiable evdrgve, they behave almost like differentiable
functions. In particular, one can define the gradient ©f intuitively, its direction is the one in which
the “slope™ of the grapH (v, di-(y)) : y € R"} of dj is the biggest atz, di-(x)) (see figure below).
The norm of the gradient has then to be the “slope” of the gadjphy In this direction.
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More formally, forz € R", I'(x) is the set of
points inK closest tar:

Pr(r) =1{y € K|d(z,y) = d(z, K)}

There is a unique smallest closed bajfl(z) en-
closingl' i (x). We denote by (x) its center and
by Fr(x) its radius. Forr € R" \ K, the general-
Ized gradient V () is defined by:

K =y

It is natural to seV y(x) = 0forx € K.

A critical point is a pointx such thatV ;-(x) = 0. The topology of the offsets df can only change at
critical points: if0 < r| < ry are such that"2 \ K"! does not contain any critical point df., then

all the level setsll_(l(r), r € |r1, 9], are homeomorphic and even isotopic topological manifolds and
the offsetsk’t and K2 are also isotopic (Isotopy lemma).

The weak feature size wis(K') of K is the infimum of the critical values afy.. From the Isotopy
lemma, it may be viewed as the “minimum size of the topolddeatures” ofix'.
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Stability of critical points

Once we know how the topology of the offsets of a given shape changes, It is aigc@ssompare
the topology of the offsets of two close shagésand K’. This is closely related to the study of the
behavior of the critical points under perturbation of the shape. Unfortiynétes easy to see that the
critical points of a shap&™ are not stable when one replaces it by a close sh&Ep&o overcome this
difficulty, one introduces a parametrized notion of critical point. Give< 1 < 1, a pointx € R" Is
ap-critical point of K if ||V (2)|| < p.

Critical point stability theorem. Let K and K’ be two compact subsets of R and d (K, K') < «.
For any u-critical point = of K, thereisa (2+/¢/dg () + p)-critical point of K at distance at most

2v/ed g () fromz.

It is possible to “encode” all tha-critical values ofd ;- in a real-valued one variable function. The
critical function y g : (0, +00) — Ry of K is defined by:

xk(d) = inf ||[Vg]

f
di (d)
For a point cloud the critical function can be easily computed from theudehatriangulation of the

point set. Knowing the critical function ak” and the Hausdorff distance betwe&hand K, the
stability of p-critical points provides a lower bound fr .

Critical function stability theorem. If dy (K, K') < cthenfor all d > 0, we have inf{y x/(u) | u €
1(d, &)} < xxld) + 2\/5 where I(d, ) = [d — &, d + 2y jc(d)V/=d + 3¢]

It iIs thus possible to locate intervals on which the critical functionkotloes not vanish and the
topology of the corresponding offsets Af does not change. The figure below illustrates this in the
case of a point cloud sampled around a torus shaf®’i(which is not a torus of revolution). The
critical function of the point cloud is in blue. The red curve is the lowemabior the critical function

of any shapdx at distance less than some fixed threshold (heéx# - the diameter of the torus being
10) from the point cloud. We distinguishes three intervals with stable topologyt the first one
corresponds to offsets having the topology of a torus (bottom left), the second oespmonds to solid
torus with a void homeomorphic to a ball inside (bottom middle - not visible footside) and the
third one is unbounded and corresponds to offsets that have the topology of a baln(bgttt).
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Sampling conditions and reconstruction

Although we are able to detect, from the critical function, common interwb$table topology for all
the shape# located at some given distance frdm, it remains to relate the topology of the offsets of
K’ to the ones of<. Fortunately, it happens that if the length of an interval where thealrifiinction

of K’ does not vanish is sufficiently large with respect to the infimurmg of then the offsets (in this
interval) of K and the offsets of’ are homemorphic and even isotopic.

L evel setsisotopy theorem Let K, K’ C R" be two compact sets such that d (K, K') <  for some
e > 0.Ifa > 0issuchthat x5+ > 2 az—fg ontheinterval [a — e —2+/2e(a + €),a+e+2+/2¢(a + €)]
then R ! (a) and R.,(a) areisotopic hypersurfaces and K and K’ are also isotopic.

It IS Important to notice that the previous theorem does not require any knowtadge (except
an upperbound on its distance &8). This is particularly useful in practical applications where the
approximationk’ is usually the only information we know abo#t. In particular, fromK’ we are
able to decide if there exists at some given distanseme shape with given “intervals of topological
stability” for its offsets. From this it is then possible to exhibit gdimg conditions insuring that the
topology of the offsets of< can be reliably recovered from the offsetsfof.

The-reach, v, (/) of K is the infimum of the valueg such thaty ;- (d) < p. Given two non-negative
real numbers; and ., we say thatx’ C R™ is a(x, p)-approximation of K c R" if the Hausdorff
distance betweeA” and K’ does not exceed times theu-reach ofK'.

| sotopic reconstruction theorem. Let K C R" be a compact set such that r, (/) > 0 for some
1> 0. Let K/ bea (k, u)-approximation of K where
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andlet d,d besuchthat 0 < d < wfs(K) and S d' < ru(K)—3kr, Thenthelevel setR[_(}(d’)
isisotopic to the level set R, (d) (the same holdsfor K77 and K9).
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