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Sampling conditions and reconstruction
Although we are able to detect, from the critical function, common intervals of stable topology for all
the shapesK located at some given distance fromK ′, it remains to relate the topology of the offsets of
K ′ to the ones ofK. Fortunately, it happens that if the length of an interval where the critical function
of K ′ does not vanish is sufficiently large with respect to the infimum ofχK ′ then the offsets (in this
interval) ofK and the offsets ofK ′ are homemorphic and even isotopic.

Level sets isotopy theorem Let K, K ′ ⊂ R
n be two compact sets such that dH(K, K ′) < ε for some

ε > 0. If a > 0 is such that χK ′ > 2
√

2ε
a−ε on the interval [a− ε− 2

√

2ε(a + ε), a+ ε+2
√

2ε(a + ε)]

then R−1
K (a) and R−1

K ′ (a) are isotopic hypersurfaces and Ka and K ′a are also isotopic.

It is important to notice that the previous theorem does not require any knowledgeon K (except
an upperbound on its distance toK ′). This is particularly useful in practical applications where the
approximationK ′ is usually the only information we know aboutK. In particular, fromK ′ we are
able to decide if there exists at some given distanceε some shape with given “intervals of topological
stability” for its offsets. From this it is then possible to exhibit sampling conditions insuring that the
topology of the offsets ofK can be reliably recovered from the offsets ofK ′.

Theµ-reach, rµ(K) of K is the infimum of the valuesd such thatχK(d) < µ. Given two non-negative
real numbersκ andµ, we say thatK ′ ⊂ R

n is a (κ, µ)-approximation of K ⊂ R
n if the Hausdorff

distance betweenK andK ′ does not exceedκ times theµ-reach ofK.

Isotopic reconstruction theorem. Let K ⊂ R
n be a compact set such that rµ(K) > 0 for some

µ > 0. Let K ′ be a (κ, µ)-approximation of K where

κ < min

(

4
√

2 − 5

14
,

µ2

16 + 2µ2

)

and let d, d′ be such that 0 < d < wfs(K) and 4κrµ

µ2 ≤ d′ < rµ(K)− 3κrµ Then the level set R−1
K ′ (d

′)

is isotopic to the level set R−1
K (d) (the same holds for K ′d′ and Kd).

Stability of critical points
Once we know how the topology of the offsets of a given shape changes, it is necessary to compare
the topology of the offsets of two close shapesK andK ′. This is closely related to the study of the
behavior of the critical points under perturbation of the shape. Unfortunately, it is easy to see that the
critical points of a shapeK are not stable when one replaces it by a close shapeK ′. To overcome this
difficulty, one introduces a parametrized notion of critical point. Given 0 ≤ µ < 1, a pointx ∈ R

n is
aµ-critical point of K if ‖∇K(x)‖ ≤ µ.

Critical point stability theorem. Let K and K ′ be two compact subsets of R
n and dH(K, K ′) ≤ ε.

For any µ-critical point x of K, there is a (2
√

ε/dK(x) + µ)-critical point of K ′ at distance at most
2
√

εdK(x) from x.

It is possible to “encode” all theµ-critical values ofdK in a real-valued one variable function. The
critical function χK : (0, +∞) → R+ of K is defined by:

χK(d) = inf
d−1

K (d)
||∇K||

For a point cloud the critical function can be easily computed from the Delaunay triangulation of the
point set. Knowing the critical function ofK ′ and the Hausdorff distance betweenK andK ′, the
stability ofµ-critical points provides a lower bound forχK.

Critical function stability theorem. If dH(K, K ′) ≤ ε then for all d ≥ 0 , we have inf{χK ′(u) |u ∈
I(d, ε)} ≤ χK(d) + 2

√

ε
d where I(d, ε) = [d − ε, d + 2χK(d)

√
εd + 3ε]

It is thus possible to locate intervals on which the critical function ofK does not vanish and the
topology of the corresponding offsets ofK does not change. The figure below illustrates this in the
case of a point cloud sampled around a torus shape inR

3 (which is not a torus of revolution). The
critical function of the point cloud is in blue. The red curve is the lower bound for the critical function
of any shapeK at distance less than some fixed threshold (here0.001 - the diameter of the torus being
10) from the point cloud. We distinguishes three intervals with stable topology for K: the first one
corresponds to offsets having the topology of a torus (bottom left), the second one corresponds to solid
torus with a void homeomorphic to a ball inside (bottom middle - not visible fromoutside) and the
third one is unbounded and corresponds to offsets that have the topology of a ball (bottom right).
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A critical point is a pointx such that∇K(x) = 0. The topology of the offsets ofK can only change at
critical points: if0 < r1 < r2 are such thatKr2 \ Kr1 does not contain any critical point ofdK, then
all the level setsd−1

K (r), r ∈ [r1, r2], are homeomorphic and even isotopic topological manifolds and
the offsetsKr1 andKr2 are also isotopic (Isotopy lemma).

The weak feature size wfs(K) of K is the infimum of the critical values ofdK. From the Isotopy
lemma, it may be viewed as the “minimum size of the topological features” ofK.
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More formally, for x ∈ R
n, ΓK(x) is the set of

points inK closest tox:

ΓK(x) = {y ∈ K | d(x, y) = d(x, K)}

There is a unique smallest closed ballσK(x) en-
closingΓK(x). We denote byθK(x) its center and
by FK(x) its radius. Forx ∈ R

n \ K, the general-
ized gradient ∇K(x) is defined by:

∇K(x) =
x − θK(x)

dK(x)

It is natural to set∇K(x) = 0 for x ∈ K.

Gradient and offset topology
Although distance functions are not differentiable everywhere, they behave almost like differentiable
functions. In particular, one can define the gradient ofdK: intuitively, its direction is the one in which
the “slope”’ of the graph{(y, dK(y)) : y ∈ R

n} of dK is the biggest at(x, dK(x)) (see figure below).
The norm of the gradient has then to be the “slope” of the graphof dK in this direction.

K

The distance function dK to a shapeK ⊂
R

n (i.e. a compact set) is defined by

dK(x) = inf
y∈K

d(x, y) for all x ∈ R
n

whered(x, y) denotes the usual euclidean
distance. Theoffsets Kr of K are the sub-
level sets of the distance function:Kr =
d−1
K ([0, r]).

Closeness between two shapesK and K ′

is measured by the mean of theHausdorff
distance dH(K, K ′) which is the smallest
r ≥ 0 such thatK ⊂ K ′r andK ′ ⊂ Kr.

Introduction
In many practical situations, the object of study is only known through a finite set of possibly noisy
sample points. It is then desirable to try to recover the geometry and the topology of the object from
this information. The most obvious example is probably surface reconstruction, where the points are
measured on the surface of a real world object. Also, a current research topic in cosmology is to study
the large scale structure formed by the galaxies, which seems to be an interconnected network of walls
and filaments. In other applications, the shape of interest may live in a higher dimensional space, as
for instance in machine learning and in particular inmanifold learning. This is also the case in time
series analysis, when the shape of study is the attractor of adynamical system sampled by a sequence
of observations. In this context, an important question is to find a sampling condition guaranteeing that
the shape can be reconstructed correctly. Besides providingtheoretical guarantees, such a condition
may be used to drive the recontruction process itself. Indeed, a possible reconstruction strategy is to
look for the shapes that are best sampled by the data points. We investigate these questions in a fairly
general setting assuming a very simple reconstruction process.

The distance functions framework
Topological and geometric features of a shape cannot be directly extracted from an approximating
data: for example, the number of connected components of a shape is obviously not the same as the
one of a point cloud approximating it. Worse, the occurence of some features may depend on a “scale”
at which both the data and the shape are viewed: for example, viewed with human eyes, the surface
of a real world object may look very regular but at a microscopic scale it appears as a much more
complicated surface with many holes, tunnels,etc...

Idea: study the topology of the level sets of the distance functionto the data and compare it to the one
of the level sets of the distance function to the shape.
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David Cohen-Steiner
INRIA Sophia-Antipolis

Fréd́eric Chazal
INRIA Futurs

Sampling and Topological Inference For General Shapes


