Computational Geometry Neighborhoods for Local Learning

Maya Gupta Eric Garcia James (Yihua) Chen Erika Chin

Dept. of Electrical Eng.
Univ. of Washington

Problem: How to choose a neighborhood for local learning?

Goal 1) neighbors are near

Goal 2) neighbors are diverse in feature space (i.e. "surround the test point")

Prior Work: Natural Neighbors

Natural Neighbors of g is the set of all points whose Voronoi cells are adjacent to the cell of g.

Sibson proposed 1981 as neighborhood for linear interpolation.

Natural Neighbors Inclusive (Gupta '07): Add all nearer neighbors to the natural neighbors.

Prior Work: Gabriel Neighbors

Shown to sometimes work better than k-NN for classification by Sanchez et al. 1997

Prior Work: Relative Neighbor Graphs

A and B are RNG neighbors if $d(A, B) \leq \max(d(A, x_j), d(B, x_j))$ for all x_j .

Shown to work consistently better than k-NN for classification by Sanchez et al. 1997

D is a RNG neighbor of X but E is not.

Enclosing Neighborhoods (Gupta et al. '07, '08)

Neighborhood definition that produces neighbors that enclose a test point in their convex hull if such a neighborhood exists.

Ex: Natural neighbors

Ex: Enclosing k-NN (Gupta 06)

Ensures interpolation rather X than extrapolation when possible.

Enclosing Neighborhoods Have Bounded Estimation Variance

Theorem (Gupta Garcia Chin 08): Local least-squares fitted hyperplane to an enclosing neighborhood has estimation variance bounded by σ^2 if the true output values are linear with additive white noise $N \sim \mathcal{N}(\mu, \sigma^2)$:

$$E_N\left[\left(\hat{f}(x) - E_N[\hat{f}(x)]\right)^2\right] \le \sigma^2$$

Enclosing k-NN (Chin Garcia Gupta '07)

The neighborhood about *g* with the fewest number of neighbors k that achieves the minimum distance to their convex hull.

(The neighborhood about g with the fewest number of neighbors k that enclose g in their convex hull.)

Expected Size of Enclosing k-NN

Theorem (Gupta Garcia Chin '08): If d-dimensional training points drawn uniformly randomly around test point, the enclosing k-NN will have an average of 2d + 1 neighbors.

Color management

Problem: How do you get a printer to print colors "correctly"?

Motivation: art, catalogs, product quality, skin tones, preserve contrast and image quality scientific and information visualization

Printer color management

Step 1: Input RGB patches and measure CIEL*a*b* values

Step 2: Estimate RGB inputs corresponding to each color in 3D CIEL*a*b* grid

Step 3: Given a desired CIEL*a*b* color, interpolate the 3D LUT for best RGB input

Printer color management summary

Step 1: Input RGB patches and measure CIEL*a*b* values

Step 2: Estimate RGB inputs corresponding to each color in 3D CIEL*a*b* grid

Bala 2003: best results with local linear regression compared to neural nets, polynomial regression, or splines.

Our work: better results by regularized local linear regression with **enclosing neighborhoods** (Gupta et al. IEEE Trans Image Proc 2008)

Step 3: Given a desired CIEL*a*b* color, interpolate the 3D LUT for best RGB input

Local Linear Regression

Example Result of Local Linear Regression f(x)

Local Ridge Regression

Local Linear Regression: $\hat{f}(x) = \beta^{*T} x$

$$\beta^* = \arg\min_{\beta} \sum_{\text{neighbors } x_i} (\beta^T x_i - f(x_i))^2$$

Local Ridge Regression: $\hat{f}(x) = \beta^{*T} x$

$$\beta^* = \arg\min_{\beta} \sum_{\text{neighbors } x_i} (\beta^T x_i - f(x_i))^2 + \lambda \beta^T \beta$$

Local Linear Regression

Example Color Management Results

Ricoh Laser Printer, 918 training patches, 729 in-gamut test patches, regularization parameter fixed at .1

Neighborhood	Mean ΔE	95 th %-ile ΔE
	Error	Error
Enclosing k-NN	3.7	7.4
Enclosing k-NN		
Minimum 15	3.5	6.8
Natural Neighbors	3.7	7.1
Baseline: 15 Neighbors	4.2	8.6

Example Neighborhood Sizes for 3-dimensional color samples

Enclosing Neighborhood Problems

Computationally Expensive

Natural Neighbors

Voronoi tessellation of entire training set and test point. Worst Case: $O(n^{\lfloor \frac{d}{2} \rfloor})$

Enclosing k-NN

QP at each step to find distance to neighbors.

Worst Case: $O(n^4)$

Test point outside convex hull of data

Sometimes in 3D, common in higher dimensions

Papers (available at idl.ee.washington.edu)

- M. R. Gupta, Custom Color Enhancements, Proc. Intl. Conf. on Image Processing 2005.
- E. Chin, E. K. Garcia, M. R. Gupta, Color Management of Printers by Regression over Enclosing Neighborhoods, Proc. Intl. Conf. on Image Processing 2007.
- M. R. Gupta, E. K. Garcia, E. Chin, Adaptive Local Linear Regression with Application to Printer Color Management, To appear, IEEE Trans. On Image Processing (2008).